Publications
Publications

Publications

From The Mind Come Drugs of the Future


GPCR & Membrane protein Rapid Computational Prediction of Thermostabilizing Mutations for G Protein-Coupled Receptors

Read 1,341

관리자 2022-12-08 14:48

Publication: Journal of Chemical Theory and Computation
Date of Publication: October 14, 2014
Authors: Supriyo Bhattacharya, Sangbae Lee, Reinhard Grisshammer, Christopher G. Tate, and Nagarajan Vaidehi
DOI: dx.doi.org/10.1021/ct500616v

G protein-coupled receptors (GPCRs) are highly dynamic and often denature when extracted in detergents. Deriving thermostable mutants has been a successful strategy to stabilize GPCRs in detergents, but this process is experimentally tedious. We have developed a computational method to predict the position of the thermostabilizing mutations for a given GPCR sequence. We have validated the method against experimentally measured thermostability data for single mutants of the β1-adrenergic receptor (β1AR), adenosine A2A receptor (A2AR) and neurotensin receptor 1 (NTSR1). To make these predictions we started from homology models of these receptors of varying accuracies and generated an ensemble of conformations by sampling the rigid body degrees of freedom of transmembrane helices. Then, an all-atom force field function was used to calculate the enthalpy gain, known as the “stability score” upon mutation of every residue, in these receptor structures, to alanine. For all three receptors, β1AR, A2AR, and NTSR1, we observed that mutations of hydrophobic residues in the transmembrane domain to alanine that have high stability scores correlate with high experimental thermostability. The prediction using the stability score improves when using an ensemble of receptor conformations compared to a single structure, showing that receptor flexibility is important. We also find that our previously developed LITiCon method for generating conformation ensembles is similar in performance to predictions using ensembles obtained from microseconds of molecular dynamics simulations (which is computationally hundred times slower than LITiCon). We improved the thermostability prediction by including other properties such as residue-based stress and the extent of allosteric communication by each residue in the stability score. Our method is the first step toward a computational method for rapid prediction of thermostable mutants of GPCRs.

TOP