Platform
Platform>Publications

Publications


GPCR & Membrane protein Leukotriene B4 receptor 2 gene polymorphism (rs1950504, Asp196Gly) leads to enhanced cell motility under low-dose ligand stimulation

Read 1,603

관리자 2022-12-08 14:45

Publication: Experimental & Molecular Medicine
Date of Publication: 24 November 2017
Authors: Jae-Hyun Jang, Jun-Dong Wei, Minsup Kim, Joo-Young Kim, Art E Cho and Jae-Hong Kim
doi:10.1038/emm.2017.192

Recently, single-nucleotide polymorphisms (SNPs) in G-protein-coupled receptors (GPCRs) have been suggested to contribute to physiopathology and therapeutic effects. Leukotriene B4 receptor 2 (BLT2), a member of the GPCR family, plays a critical role in the pathogenesis of several inflammatory diseases, including cancer and asthma. However, no studies on BLT2 SNP effects have been reported to date. In this study, we demonstrate that the BLT2 SNP (rs1950504, Asp196Gly), a Gly-196 variant of BLT2 (BLT2 D196G), causes enhanced cell motility under low-dose stimulation of its ligands. In addition, we demonstrated that Akt activation and subsequent production of reactive oxygen species (ROS), both of which act downstream of BLT2, are also increased by BLT2 D196G in response to low-dose ligand stimulation. Furthermore, we observed that the ligand binding affinity of BLT2 D196G was enhanced compared with that of BLT2. Through homology modeling analysis, it was predicted that BLT2 D196G loses ionic interaction with R197, potentially resulting in increased agonist-receptor interaction. To the best of our knowledge, this report is the first to describe a SNP study on BLT2 and shows that BLT2 D196G enhances ligand sensitivity, thereby increasing cell motility in response to low-dose ligand stimulation.

TOP